Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica B ; (6): 655-665, 2018.
Article in English | WPRIM | ID: wpr-690874

ABSTRACT

Microemulsions are promising drug delivery systems for the oral administration of poorly water-soluble drugs. However, the evolution of microemulsions in the gastrointestinal tract is still poorly characterized, especially the structural change of microemulsions under the effect of lipase and mucus. To better understand the fate of microemulsions in the gastrointestinal tract, we applied small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) to monitor the structural change of microemulsions under the effect of lipolysis and mucus. First, the effect of lipolysis on microemulsions was studied by SAXS, which found the generation of liquid crystalline phases. Meanwhile, FRET spectra indicated micelles with smaller particle sizes were generated during lipolysis, which could be affected by CaCl, bile salts and lecithin. Then, the effect of mucus on the structural change of lipolysed microemulsions was studied. The results of SAXS and FRET indicated that the liquid crystalline phases disappeared, and more micelles were generated. In summary, we studied the structural change of microemulsions in simulated gastrointestinal conditions by SAXS and FRET, and successfully monitored the appearance and disappearance of the liquid crystalline phases and micelles.

2.
Acta Pharmaceutica Sinica B ; (6): 784-794, 2018.
Article in English | WPRIM | ID: wpr-690864

ABSTRACT

Human cytosolic sulfotransferase 2A1 (SULT2A1) is an important phase II metabolic enzyme. The detection of SULT2A1 is helpful for the functional characterization of SULT2A1 and diagnosis of its related diseases. However, due to the overlapping substrate specificity among members of the sulfotransferase family, it is difficult to develop a probe substrate for selective detection of SULT2A1. In the present study, through characterization of the sulfation of series of bufadienolides, arenobufagin (AB) was proved as a potential probe substrate for SULT2A1 with high sensitivity and specificity. Subsequently, the sulfation of AB was characterized by experimental and molecular docking studies. The sulfate-conjugated metabolite was identified as AB-3-sulfate. The sulfation of AB displayed a high selectivity for SULT2A1 which was confirmed by reaction phenotyping assays. The sulfation of AB by human liver cytosols and recombinant SULT2A1 both obeyed Michaelis-Menten kinetics, with similar kinetic parameters. Molecular docking was performed to understand the interaction between AB and SULT2A1, in which the lack of interaction with Met-137 and Tyr-238 of SULT2A1 made it possible to eliminate substrate inhibition of AB sulfation. Finally, the probe was successfully used to determine the activity of SULT2A1 and its isoenzymes in tissue preparations of human and laboratory animals.

SELECTION OF CITATIONS
SEARCH DETAIL